

Drainage and Wastewater Management Plan

Tangmere Wastewater System Plan

> from Southern Water

Contents

- Wastewater System Map
- **Problem Characterisation**
- **Generic Options**
- **Outline Option Appraisal**
- **Investment Needs**
- Location of Potential Options

Tangmere wastewater system: map and key facts

Population Equivalent (PE)	5,045
Discharge Waterbody	Aldingbourne Rife
Number of Pumping Stations	17
Number of Overflows	1
Length of Sewer (km)	45.0
Catchment Reference	TANG

	BRAVA Results Table (TANG)						
	Planning Objective	2020	2050				
1	Internal Sewer Flooding Risk	0					
2	Pollution Risk	0					
3	Sewer Collapse Risk	2					
4	Risk of Sewer Flooding in a 1 in 50 year storm	1	1				
5	Storm Overflow performance	0	0				
6	Risk of WTW Compliance Failure	0	1				
7	Risk of flooding due to Hydraulic Overload	1	1				
8	Dry Weather Flow Compliance	0	1				
9	Good Ecological Status / Potential	0					
10	Surface Water Management	0					
11	Nutrient Neutrality	1	1				
12	Groundwater Pollution	1					
13	Bathing Waters	2					
14	Shellfish Waters	NA					

Problem Characterisation Tangmere (TANG)

This document describes the causes of the risks identified by the Baseline Risk and Vulnerability Assessment (BRAVA). The BRAVA results for this wastewater system are summarised in Table 1. The results indicate that flooding, pollution and water quality are the main concerns in this wastewater system. We have completed risk assessments for 2050 where we have the data and tools available to do so. For the other planning objectives, we will explore how we can predict future risks for the next cycle of DWMPs. All the risk assessment methods need to be reviewed after the first DWMPs have been produced with a view to improve the methods and data for future planning cycles.

Pla	nning Objectives	2020	Driver	2050
1	Internal Sewer Flooding Risk	0	-	
2	Pollution Risk	0	-	
3	Sewer Collapse Risk	2	Operational	
4	Sewer Flooding in a 1 in 50-year storm	1	Hydraulic	1
5	Storm Overflow Performance	0	-	0
6	WTW Water Quality Compliance	0	Quality	1
7	Flooding due to Hydraulic Overload	1	Hydraulic	1
8	WTW Dry Weather Flow Compliance	0	-	1
9	Good Ecological Status / Good Ecological Potential	0	-	
10	Surface Water Management	0	-	
11	Nutrient Neutrality	1	Unknown	1
12	Groundwater Pollution	1	Operational	
13	Bathing Waters	2	Customer	
14	Shellfish Waters	NA	-	

Table 1: Results of the BRAVA for Tangmere wastewater system

I	_	
BRA	*No iss	
NA	Not Applicable*	to plan
0	Not Significant	within
1	Moderately Significant	Systen
2	Very Significant	

*No issues relevant to planning objective within Wastewater System

Investment Strategy

The risks identified in this wastewater system mean that we have assigned the following investment strategy:

Improve

This means that we consider that the current performance of the drainage and wastewater system needs to be improved to reduce the impacts on our customers and/or the environment. We will plan investment to reduce the current risks by actively looking to invest capital funding in the short term to address current performance issues (and consider future risks when implementing improvements).

Planning Objective 1: Internal Sewer Flooding Risk

The number of internal sewer flooding incidents reported during the three years considered by the risk assessment are shown in Figure 1. The total number of connections in this wastewater system means there have been less than 1.68 incidents per 10,000 connections per year (a threshold set by Ofwat) so the risk is in the 'not significant' band.

Figure 1: Number of internal flooding incidents per annum and causes

Planning Objective 2: Pollution Risk

The number of pollution incidents reported during the three years considered by the risk assessment are shown in Figure 2. The length of sewer in this wastewater system means there have been less than 24.51 incidents per 10,000km per year (a threshold set by Ofwat) so the risk is in the 'not significant' band.

Figure 2: Number of pollution incidents per annum and causes

Table 2: Sewer collapses and rising main bursts

Sewer Collapse	2017/18	0
	2018/19	0
	2019/20	0
Rising Main Bursts	2017/18	2
	2018/19	4
	2019/20	2

Planning Objective 3: Sewer Collapse Risk

The number of sewer collapses reported during the three years considered by the risk assessment are shown in Table 2. The length of sewer in this wastewater system means there have been more then 9.44 incidents per 1,000km per year (a threshold set by Ofwat) so the risk is in the 'very significant' band.

The primary driver is 'Operational' as the cause of

these collapses and bursts is due to the age and condition of the sewers.

Planning Objective 4: Sewer Flooding in a 1 in 50 Year Storm

The risk of flooding in a 1 in 50 year storm is moderately significant in 2020 and 2050. This is because our computer model of the sewer network indicate for 2020 that approximately 50 - 60 properties within this wastewater system are in areas that could flood by water escaping from sewers. This model prediction increases the number of properties in areas at risk from flooding to approximately 100 - 200 by 2050.

Our wastewater networks are generally designed with capacity for up to a 1 in 30 year storm, hence flooding is expected to occur during more severe storms such as a 1 in 50 year event. Flooding will occur due to insufficient capacity of the drainage system either on the surface before it enters the drainage system, and/or from manholes, in people's homes or at a low point elsewhere in the system.

Planning Objective 5: Storm Overflow Performance

The storm overflow performance risk has been assessed as not significant in 2020 and 2050.

Planning Objective 6: Wastewater Treatment Works Water Quality Compliance

The risk of non-compliance with our wastewater quality permit has been assessed as not significant for 2020 but is predicted to increase to moderately significant by 2050. This is because the wastewater treatment works has no record of compliance failure during the last three years (2018-2020). However it was assessed to not have adequate capacity to cope with future growth in the wastewater system.

Planning Objective 7: Flooding due to Hydraulic Overload

This is an assessment of the risk of flooding from sewers during a 1 in 30 year storm, and more frequent rainfall, to understand where flooding could occur. The risk of sewer flooding due to hydraulic overload is moderately significant in 2020 and 2050. The annualised number of properties in areas at risk of flooding is shown in Table 3.

Table 3: Annualised number of properties at risk per 10,000connections.

Rainfall Return	Number o at	of Properties Risk	Annualised per 10,000 connections			
Period (yr)	2020	2050	2020	2050		
1 in 1	0	7	0	4		
1 in 2	0	10	0	4		
1 in 5	0	18	0	3		
1 in 10	6	60	1	6		
1 in 20	35	84	2	4		
1 in 30	40	86	1	3		
То	tal Annualis	4	24			

This indicates that the capacity of the wastewater network can be exceeded during 1 in 30 year storms (or more frequent events). Future growth, creep and/or climate change are not anticapted to significantly increase the risk by 2050.

Planning Objective 8: Wastewater Treatment Works Dry Weather Flow Compliance

The risk of Wastewater Treatment Works Dry Weather Flow Compliance is not significant for 2020 but is predicted to increase to moderately significant in 2050, shown in Figure 3. This is because the predicted DWF in 2050 might be between 80% and 100% of the current permit.

Figure 3: Recorded and predicted dry weather flow with existing permit

Planning Objective 9: Good **Ecological Status / Good Ecological Potential**

Table 4 shows the waterbodies connected to this wastewater system are not achieving Good Ecological

Table 4: Waterbodies not achieving GES/GEP

Waterbody	Classification	Status	Activity
Aldingbourne Rife	Ammonia (Phys- Chem)	Moderate	Sewage discharge (continuous)

Status or Potential (GES/GEP). The Environment Agency has attributed the 'reasons for not achieving good status' to water company operations. Our risk assessment has been assessed based on the worst assigned status (Moderate) and has been moderated from moderately significant to not significant because of the presence of Tertiary Treatment at the wastewater system Treatment Works.

Planning Objective 10: Surface Water Management

Figure 4 illustrates the sources of water flowing in the wastewater system during a 1 in 20 year storm. It shows that surface water runoff from roofs, road and permeable surfaces constitutes more than 74.8% of the flow in the sewers. The total contribution of foul water from homes is 16.7% with business contributing 3.5%. The baseflow is infiltration from water in the ground and makes up 5.1% of the flow in the system.

Figure 4: Sources of water flowing in sewers during a 1 in 20 year storm

Planning Objective 11: Nutrient Neutrality

The risk to internationally designated habitat sites from this wastewater system is moderately significant in 2020 and 2050. This is because Natural England have advised that there is a risk to condition for the habitat sites that are

Table 5: Habitat Sites hydraulically linked to wastewater system

Habitat Sites					
Solent and Dorset Coast	Nitrate permit review required				

hydraulically linked to our wastewater system, listed in Table 5.

Planning Objective 12: Groundwater Pollution

The risk of Groundwater Pollution is moderately significant. The wastewater system network of sewers extends across geographical areas that are designated as a Source Protection Zone (SPZ) for water supply. An estimated 23% of the sewer network crosses SPZ 1 or SPZ 2 and infiltration in the wastewater system is estimated to be of concern, based on infiltration equation used in the Wastewater Treatment Works Dry Weather Flow Compliance planning objective.

The primary driver is 'Operational' due to condition of our assets.

Planning Objective 13: Bathing Waters

The designated bathing waters that could be affected by discharges from this wastewater system are shown in Table 6, along with the current classification from the Environment Agency.

Pothing Waters	Annual Results				
Datiling Waters	2017	2018	2019		
Felpham	Sufficient	Sufficient	Sufficient		
Bognor Regis East	Good	Excellent	Good		

Table 6: Bathing Water annual results

The risks from this wastewater system on Felpham and Bognor Regis East bathing waters has led to an assessment of is very significant.

The primary driver is 'Customer' due to suspected foul to surface water misconnections as well as suspected agriculture affecting the bathing waters in this wastewater system.

Planning Objective 14: Shellfish Waters

The discharges from this wastewater system do not impact on any designated shellfish waters.

Southern Water August 2021 Version 1

Generic Options Assessment for: Tangmere (TANG)

		20	Deliver	20	Tunn of	Conoria Ortion		Teles		
	Planning Objectives	20:	Driver	20	Measures	Categories	lcon	Forward?	Reasons	Examples of Generic Options
PO1	Internal Flooding	0	-	-		Control / Reduce surface water run-off)))))	Y	-	Natural Flood Management; rural land management and catchment management; SuDS including blue and green infrastructure; storm management
PO2	Pollution Risk	0	-	-	Source (Demand)	Reduce groundwater levels		N	None of the significant risks in this catchment are caused by high groundwater levels. Hence reducing groundwater levels will not impact any of the risks in this catchment.	Reduce leakage from water supply pipes; pump away schemes to locally lower groundwater near sewer network
PO3	Sewer Collapse	2	Operational	-	(to reduce likelihood)	Improve quality of wastewater	0	N	None of the significant risks are caused by the quality of wastewater entering the wastewater system.	Domestic and business customer education; incentives and behaviour change (reduce Fats, Oils & Grease, wet wipes etc.); monitoring trade waste at source; on-site black water and/or greywater pre-treatment
PO4	Risk of Sewer Flooding in 1 in 50 yr	1	Hydraulic	1		Reduce the quantity / demand	+	Y	-	Water efficient appliances; water efficient measures; blackwater and/or greywater re-use; treatment at source
PO5	Storm Overflow Performance	0	-	0	Pathway	Network Improvements		Y	-	Asset optimisation; additional network capacity; storage; separate flows; structural repairs; re-line sewer pipe and manholes; smart networks.
PO6	Risk of WTW Compliance Failure	0	Quality	1	(Supply) Measures (to reduce	Improve Treatment Quality	(8-8)	Y	-	Increase treatment capacity; rationalisation of treatment works (centralisation / de-centralisation); install tertiary plant; UV plant or disinfection facilities; innovation; improve Technical Achievable Limits; new WTWs
PO7	Annualised Flood Risk/Hydraulic Overload	1	Hydraulic	1	interintood)	Wastewater Transfer to treatment elsewhere)1(N	The causes of risk are not due to where our systems discharge to the environment or our ability to increase the capacity to connect more homes. Transferring wastewater for treatment elsewhere will not reduce any of the significant risks in this catchment.	Transfer flow to other network or treatment sites; transport sewage by tanker to other sites
PO8	DWF Compliance	0	-	1		Mitigate impacts on Air Quality	O I	N/A	Not included in first round of DWMPs	Carbon offsetting; noise suppression /filtering; odour control and treatments
PO9	Achieve Good Ecological Status	0	-	-	Receptor Measures	Improve Land and Soils	ଙ୍କୁ	N/A	Not included in first round of DWMPs	Sludge soil enhancement
PO10	Improve Surface Water Management	0	-	I	(to reduce consequences)	Mitigate impacts on receiving waters	∦ ₽	Y		River enhancement, aeration
PO11	Secure Nutrient Neutrality	1	Unknown	1		Reduce impact on properties	<u> م</u>	Y		Property flood resilience; non-return valves; flood guards / doors; air brick covers
PO12	Reduce Groundwater Pollution	1	Operational	-	Other	Study / Investigation	0°	Y	-	Additional data required; hydraulic model development; WQ monitoring and modelling
PO13	Improve Bathing Water Quality	2	Customer	-						
PO14	Improve Shellfish Water Quality	NA	-	-						August 2021 Version 1

Fangmere Wastewater System - Outline Options Appraisal												
Generic Option	Location of Risk	Planning Objective and Description of Risk	Option Reference	Description	Further Description	Unconstrained Option?	Constrained Option?	Feasible Option?	Net Benefits	Estimated Cost	Preferred Option	Best value / Least cost or Reasons for Rejection
Control/ Reduce surface water entering the sewers	S											
Control / Reduce groundwater infiltration												
Improve quality of wastewater entering sewers (increducing FOG, RAG, pre-treatment, trade waste)												
Control / Reduce the quantity / flow of wastewater entering sewer system	TANGMERE WTW	PO8 (2050)- Dry Weather Flow	TANG.SC04.1	Water Efficient Appliance / Measures	Southern Water aims to reduce water consumption to 100 l/h/d by 2040.	No						Deliver the required outcome
Network Improvements (eg increase capacity, storage, conveyance)	Catchment Wide	PO3- Sewer Collapse	TANG.PW01.1	Pipe Rehabilitation Programme	Targeted CCTV / electroscan surveys and proactive sewer rehabilitation to reduce risk of sewer collapse.	Yes	Yes	Yes	Minor Positive +	£816K	Yes	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	Catchment Wide	PO8 (2050)- Dry Weather Flow	TANG.PW01.2	Pipe Rehabilitation Programme	Relining/improving structural grades of sewers across the catchment.	No						Risk and uncertainty - future resilience
Network Improvements (eg increase capacity, storage, conveyance)	Arundel- TCZ	PO12- Ground Water Pollution	TANG.PW01.3	Pipe Rehabilitation Programme	Total length of sewer within protection zones- 16.	Yes	Yes	Yes	Minor Positive +	£455K	Yes	Best Value
Improve treatment (capacity and quality at existing works or develop new WTWs)	TANGMERE WTW	PO6 (2050)- WTW compliance	TANG.PW02.1	Increase Capacity	Increase Capacity.	Yes	Yes	Yes	Minor Positive +	£625K	Yes	Best Value
Improve treatment (capacity and quality at existing works or develop new WTWs)	TANGMERE WTW	PO8 (2050)- Dry Weather Flow	TANG.PW02.2	Permit Review	Proposed permit-1631m3.	No						Do customer support it and Risk and uncertainty - future resilience
Wastewater Transfer	TANGMERE WTW	PO8 (2050)- Dry Weather Flow	TANG.PW03.1	Construct New WPS & Rising Main	Within 10km radius of TANG is LAVA which in 2050 will have approximately 903m3day of headroom (until it is above 80% of its DWF permit)Within 20km radius of TANG is HATG which in 2050 will have approximately 364m3day of headroom (until it is above 80% of its DWF permit).	No						Cost Effective and Do customer support it
Mitigate impacts on Air Quality												Not included in the first round of DWMPs
(e.g. Carbon neutrality, noise, odour)											+	Not included in the first round of DWMPs
Mitigate impacts on Water Quality												
Reduce consequences Properties												
Study/ investigation to gather more data	Catchment Wide	PO3- Sewer Collapse	TANG.OT01.1	CCTV Investigation	CCTV Investigation.	No						Risk and uncertainty - future resilience
Study/ investigation to gather more data	Catchment Wide	PO8 (2050)- Dry Weather Flow	TANG.OT01.2	Infiltration Reduction Plan	Relining/improving structural grades of sewers across the catchment.	No						Cost Effective and Risk and uncertainty - future resilience
Study/ investigation to gather more data	Solent and Dorset Coast	PO11 - Nutrient Neutrality	TANG.OT01.3	Nutrient Budget	Catchment is Hydraulically linked to; Solent and Dorset Coast (Threat/Remedy Identified or Anticipated) Banding 2020 - 1 (however should be 2); There is a Phosphate permit (2.	Yes	Yes	Yes	Minor Positive +	£76K	Yes	Best Value
Study/ investigation to gather more data	Arundel- TCZ	PO12- Ground Water Pollution	TANG.OT01.4	Study and Investigations	Total length of sewer within protection zones- 11.	No						Cost Effective and Risk and uncertainty - future resilience
Study/ investigation to gather more data	Catchment Wide	PO4- 1 in 50 year PO7- Hydraulic Overload	TANG.OT01.5	Improve Hydraulic Mode	I Improve Hydraulic Model.	Yes	Yes	Yes	Minor Positive +	£125K	Yes	Best Value
Study/ investigation to gather more data	TANG FC01_1 - St Andrews Close	PO4 and PO7 Flooding	TANG.OT01.6	Study/Modelling investigation	DAP Option.	No						
Study/ investigation to gather more data	TANG FC01_2 - St Andrews Close	PO4 and PO7 Flooding	TANG.OT01.7	Study/Modelling investigation	DAP Option.	No						

Drainage and Wastewater Management Plan (DWMP)

DWMP Investment Needs

- 1. The options listed in the DWMP Investment Needs below are the preferred options in our DWMP. They will need further refinement as we implement the DWMP to confirm the exact location and scope of action needed, and the cost.
- 2. The costs are indicative costs for planning purposes only. The basis for the cost estimates, including assumptions and uncertainties, are explained in our DWMP Investment Plans.
- 3. The table of Investment Need provides an indicative cost so we know what level of funding is needed to reduce the risks. It is not a commitment to fund or deliver any option.
- 4. The Indicative Timescale is when the investment is needed. Some options may take several investment periods to achieve the desired outcomes.
- 5. Potential Partners have been identified in the table of Investment Needs. This is to indicate where there may be opportunities for us to work with these partners when developing and delivering these options. It is not a commitment by any of the partners to work with us.
- 6. These options will inform our future business plans as part of the Ofwat periodic review process to secure the finance to implement these options.
- 7. The options listed are prioritised by the method stated in the Programme Appraisal Technical Summary.

Date : May 2023 Version : 1.0

Reference	River Basin (L2)	Wastewater System (L3)	Location	Option	Indicative Cost	Indicative Timescales	Potential Partners	Applicable Planning Objectives		
Arun and Western Streams										
Tangmere										
TANG.CONS01.1	Arun and Western Streams	Tangmere	Tangmere	Growth scheme from our Drainage Area Plan (DAP): Upsizing sewer, MHs, new MH, new offline storage or separation	£TBC	AMP10	-	PO3 PO4 PO7 PO11 PO12 PO13		
TANG.PW01.1	Arun and Western Streams	Tangmere	Coach Road, Stane Street, Tangmere Village	Integrity checks of Rising Mains and enforcement.	£815K	AMP9	-	PO3		
TANG.PW01.3	Arun and Western Streams	Tangmere	Arundel Capture Zone	Sewer Rehabilitation: Targeted CCTV or electroscan surveys to check the integrity of sewers and reline or renew them to reduce the risk of groundwater pollution	£455K	AMP9	-	PO12		
TANG.PW02.1	Arun and Western Streams	Tangmere	Tangmere WTW	Increase treatment capacity to allow for planned new development	£625K	AMP9	-	PO6		
TANG.OT01.5	Arun and Western Streams	Tangmere	System Wide	Improve the Hydraulic Model: Surveys and reverification of model to improve confidence and accuracy	£125K	AMP8	-	PO4 PO7		
TANG.WINEP.PO2.1	Arun and Western Streams	Tangmere	Tangmere WTW	Action to reduce total phosphorus and/or total nitrogen levels from discharges which drain to internationally designated sites where there is a risk from nutrients	£3,420K	AMP10	-	PO9 PO11		

Drainage and Wastewater Management Plan: Location of Potential Options TANGMERE Wastewater system in Arun and Western Streams River Basin Catchment

(i) This map should be read in conjunction with the list of Investment Needs for this wastewater system

(ii) The areas shown on this map are the potential locations for the options. The location of the risk may be elsewhere in the system.

(iii) Labels for each location are the option references in the list of Investment Needs (iv) Drainage Area Plan (DAP) options on flooding and growth are not shown.

Customer Education Pipe Rehabilitation Asset Resilience Wastewater Treatment WINEP Nutient Neutrality WINEP Storm Overflows

