Option 1	SWS_SNZ_HI- REU_RE1_ALL _for20	Recycling discharge	(SNZ): (15MI/c	Littleha 1)	mpton W	/TW with	n river	Option description The 2 schemes SV construction activiti and therefore do no	ption description and potential effects: The 2 schemes SWS_SNZ_HHTER_RZ5_ALL_tilmore-hardha p 10 and SWS_SNZ_HHREU_RE1_ALL_env_cu_chu2_conju only have construction activities that may impact the surface waterbodies and it is assumed that this can be completed without deteriorating the WFD status and therefore do not influence the cumulative assessment				
Option 2	SWS_SNZ_HI- ROC_RE1_ALL _hsb-rcm	Groundw	rater (SN	NZ): Nev (4MI	v boreha /d)	le at Pet	tworth	The SWS_SNZ_Hi the western River I infrastructure, and	REU_RE1_ALL_for20 scheme proposes the transfer of treated effluent from Littlehampton WwTW kother upstream of the Pulborough SWS abstraction. This option would require the construction of a new discharge into the Western Rother.	V to a new disc f new in-chann	charge point to el		
Option 3	SWS_SNZ_HI- TFR_RZ5_ALL_tilmor e-hardha p 10	Bulk im	port (SN	VZ): SEV	V RZ5 to	Pulboro	ough	The SWS_SNZ_HI new replacement b by 4 MI/d. The incr (GB107041012780	.ROC_RE1_ALL_hsh-rcm (hsh-rcm) scheme proposes to return SWS to service with a new boreho orehole for Petworth WSW in Sussex North Area. As the borehole is out of service the RA abstrac ased abstraction from the groundwater source within license limits is likely to impact the Petworth) which discharges to the River Rother (GB107041012810).	ole. The option tion is expecte stream	is to drill a d to increase		
Option 4	SWS_SNZ_HI- REU_RE1_ALL_env_ cu_chu2_conju	Recycling	(SNZ): Pull	Horsha	m WTW (6.8MI/c	with stor 1)	rage at	Scheme BR_Rog the Greensand n	roposes return of Petersfield groundwater abstraction to service. The increased abstraction (within ay impact on flows in the Western Rother (GB107041012810) and downstream.	n existing licenc	ce limits) from		
Option 5	SWS_SNZ_HI- GRW_ALL_ALL_rogat e	Pete	ersfield	refurbisł	nment (1	.96 MI/d)	prior to the dischar used to define the elements, particula impact does not ch	Introvater abstraction due to SWS_SNZ_HI-ROU_RET_ALL_INSOLOTIN and SR_ROg could potential ge point of SWS_SNZ_HI-REU_RET_ALL_for20 and therefore change the assumption of river dilut vater quality standards of the treated effluent discharge. This in turn could lead to a deterioration in rly since point source water industry discharge is the RNAG for the moderate phosphate sub- qualit ange the possible outcomes and uncertainties in the stage 2 assessment of each scheme but their with renced the UKED compliance.	ition capacity the physico-chemition physico-chemitiy element. The potential inter	earn nows nat would be nical quality nis cumulative raction requires		
Hydromorph designat	tion	not decigr	ated ar	tifical or	heavily	modified		lurther assessmen	with respect to WFD compliance.				
Water body ID		CB10704	101281		Tieavily	mounieu		The Hanham Gau	ing station, 300m downstream of the discharge point, has Q95 flows of 1.08 m3/s or 93.31 ML/d ba	ased on NRFA	data for the		
Water body name Western Rother								period 1959-2022. Q95 and Q75, rest highly conservative abstractions). Ther this requires furthe	The ALS for Arun and Western Stream states that for AP 1 (Lower Rother e.g. Hanham Gauge) the icted water available at Q50 and available water at Q30. The net change in surface water follow is a estimate of 100% of groundwater abstraction is allocated to the surface water body (15 M/d gain, efore it is unlikely that there would be a negative cumulative impact of river flow reduction on WFD consideration depending on the variation in treated effluent discharge over time.	ere is no water minimum of + minus 4 MI/d a status elemen	available at 9 Ml/d if a and 1.96 Ml/d its, however		
	Baseline St	atus		Reaso	ns for n	ot achie	eving g	ood status	Assessment of option				
Status element	RBMP2 status (2015)	2019 status	Flow	Morphology	Sanitary water quality	Nutrients		Other	Assessment	Potential for deterioration	Potential for introduction of impediments		
Phytoplankton									(hsb-rcm) - Increase in abstraction within licence limits may affect flow in Petworth stream discharging to the River Rother. Changes to the hydrological regime, river continuity and morphological conditions due to change in baseflow could impact fish, invertebrate and macrophyte/phytobenthos populations.	Non- compliant (low conf.)	n/a		
Invertebrates	High	Good							SWS_SNZ_HI-REU_RE1_ALL_for20 -The new discharge is meant to augment river flows to support further abstraction in the river and is therefore unlikely to deteriorate the water body status. However new discharge of treated effluent into River Rother could potentially result in hysico chemical effects that could impact on biological status elements. which may be further	Non- compliant (low conf.)	n/a		
Macrophytes/ phytobenthos	Mod	Good							impacted by potentially lower flows due to increased abstraction upstream due to SWS_SNZ_HI-ROC_RE1_ALL_hsb-rcm	Non- compliant (low conf.)	n/a		
Phys-chem water quality (in support of ecological status)	Mod	Mod			Phosp Confirn	hate - Po ned. Also m	oint sou o Diffus nanagei	rce water industry. e - source poor soil ment	The impact of a reduction in river baseflow prior to the treated effluent discartage point will need to be understood alongside the further assessment required to consider the final characteristics of the new discharge and ensure that water quality is not compromised, particularly given the likely connectivity between the river and the Arun Valley SAC, SPA and Ramsar.	Non- compliant (low conf.)	Non- compliant (low conf.)		
Chemicals	Good	Bad	Fails d Perfluc diphen	ue to Me prooctar lyl ether	ercury ar le sulpho s (PBDE	nd Its Col onate (Pf)	mpoune FOS), P	ds, Polybrominated	In theory the discharge associated with SWS_SNZ_HI-REU_RE1_ALL_for20 with could introduce new chemicals to this waterbody, or increase loading of chemicals already present. This would need further assessment.	Non- compliant (low conf.)	Non- compliant (low conf.)		
RBMP2 water body m	MP2 water body measures N/A as not designated heavily modifi					heavily n	nodified			N/a	N/a		
										Non-cor (low c	mpliant conf.)		

								Option description and potential effects:					
		Storage	(947)	Raising	Rowl R	econyoir	0.4m	The two options th	at affect Bewl Reservoir and the downstream/upstream catchment are:				
Option 1	SWS_KMW_HI- RSR_RE1_ALL_rab1	Storage	(3nz).	(3MI	/d)	eservoir	0.411	The Rab1 option is hydromorphology of	the raising of the Bewl Reservoir top water level by 0.4m to increase storage and yield. The im, of the reservoir is uncertain but likely temporary. It is likely to have short-term impacts on water	pact this may had a pact this may had a pact the pact of the pact	ave on the ed with the		
Option 2	WR_PWR_Bew3_CON JU	Recyclin	ng (SHZ): Tonbr	idge to I	Bewl (5.	7MI/d)	required to determi	Ind potential longer-term changes as a result of changes to water depths, storage times and mix ine whether this would be a positive or a negative change.	ould potential	vould be		
Option 3								physico-chemical e the option could m characteristics of th	Refers that could impact on biological status elements (see water quality below). Macrophytes a ake it more difficult to achieve future improvements. Further assessment is therefore required to he new discharge and ensure that water quality is not compromised.	re already at Po consider the fi	por status, and nal		
								Cumulatively thes	e two echemes may both have negative impacts on the Physico-chemical water quality status o	f the water body	whilet the		
Water body type		Lake						treated effluent dis	charge scheme could have an impact on the chemical quality status. How these two schemes w	ill interact will d	epend on the		
Hydromorph design	ation	Heavily Modified results of							er assessment of the final characteristic of the water quality of the new discharge and the model	ling of the wate	r quality		
Water body ID		GB30644	398					impact of reservoir designated in each	storage change. Therefore the potential for deterioration of each status element will remain at t	he highest pote	ntial		
Water body name		Bewl Water											
	Baseline St	atus	ſ	Reaso	ns for r	not achi	ieving go	ood status	Assessment of option				
Status element	RBMP2 status (2015)	2019 interim Status	Flow	Morphology	Sanitary water quality	Nutrients		Other	Assessment	Potential for deterioration	Potential for introduction of impediments		
Phytoplankton	n/a	n/a							Raising the reservoir will alter the hydro-morphology of the reservoir, with likely temporary impacts on marginal vegetation and water quality, although it is expected that this would equilibrate over time. Longer-term impacts on water quality could occur, as described below, which would have potential implications for biology.	n/a	n/a		
Invertebrates	n/a	n/a							The new discharge of treated effluent could potentially result in physico-chemical effects that could impact on biological status elements (see water quality below). Macrophytes are already at Poor status, and the option could make it more difficult to achieve future improvements. The installation of new discharge infrastructure and the increase in inflow to the lake may have a minor influence on the hydromorphology of the water body, although this may be positive if it helps to maintain water levels during dry periods, so is expected to be compliant.	n/a	n/a		
Macrophytes/ phytobenthos	Poor	Poor								Non- compliant (med. conf.)	Non- compliant (med. conf.)		
Phys-chem water quality (in support of ecological status)	Poor	Mod			Total p dischai industr	hospho rge - res y (confi	rus - poir sponsible rmed)	nt source sewage sector water	A new discharge into the reservoir could potentially change the physico-chemistry of the water body, for example by increasing nutrient concentrations, changing dissolved oxygen concentrations, and changing water temperature. The water body already fails for phosphate, which is at Poor status, and the introduction of treated effluent (depending on the final discharge quality) could worsen this or prevent future improvements. This is particularly a risk if the option was used during drought periods, i.e. with low water levels and high temperatures. Further assessment is therefore required to consider the final characteristics of the new discharge. Raising the reservoir will alter the hydro-morphology of the reservoir. It is likely to have short- term impacts on water quality associated with the flooded margins, and potential longer-term changes as a result of changes to water depths, storage times and mixing. Modelling would be required to determine whether this would be a positive or a negative change, and how these two options would interact.	Non- compliant (med. conf.)	Non- compliant (med. conf.)		
Chemicals	Good	Bad	Fails fo sulpho (PBDE	or Mercu nate (Pl :)	ury and I FOS) an	lts Com id Polyb	pounds, l prominate	Perfluorooctane d diphenyl ethers	The discharge could introduce new or increased concentrations of chemicals in to the water body. This will require further review to determine the relative concentrations of chemicals in the discharge and receiving water. The change in reservoir storage would be unlikely to impact the status of the chemical elements.	Non- compliant (low conf.)	Non- compliant (low conf.)		
RBMP2 water body measures			Heavily regulat Workir river IN Water Good of temper PLACE Structu PLACE	y modifi tion (i, ii ng with p N PLACI manage downstri rature, 4 E WITH ural mod	ed for di) bhysical <u>E.</u> ement - eam DO i3. Dowr THE EX dification	form ar form ar 42. Acco levels, hstream (CEPTIC h - 18. R	water sup nd function ess to fee 46. Good flow region DN OF 43 Reduce fis	oply and water on - 3. Re-engineer eder-streams, 45. d downstream ime. ALL IN 3. sh entrainment. IN	It is assumed that current release arrangements from the reservoir would be retained. However, the increased storage is likely to result in delayed refili and associated spilis, and potentially reduced total spilis. This could be an impediment to the improvement of measure 43 (downstream flow regime) It is assumed that the new discharge would be appropriately designed. The scheme could provide some benefit to these measures by helping to maintain water levels in the reservoir and thereby facilitating downstream flows and access to feeder streams	Non- compliant (low conf.)	Non- compliant (low conf.)		
L			1						Overall assessment of WFD Regulations compliance of the option in this water body	Non-co (med.	mpliant conf.)		

			Option description and potential effects:
		Storage (SHZ): Beising Bowl Beconvoir 0.4m	These two options affect Bewl Reservoir and the downstream/upstream catchment.
Option 1	SWS_KMW_HI- RSR_RE1_ALL_rab1	(2MI/d)	The Rab1 option is the raising of the Bewl Reservoir top water level by 0.4m to increase storage and yield. This is Non-compliant (low conf.) in
		(Sivii/d)	stage 2 screening due to the potential impact on the waterbody downstream of Bewl Water. Increased storage could delay and reduce the
			overall number of spills into the Bewl waterbody altering the hydromorphology downstream which could have negative consequences on
			ecological status elements. This scheme may cause a reduction in high flows by reducing the occurrence of overflow over the spillway during
Ontion 2	WR_PWR_Bew3_CON	Requeiting (SHZ): Tenbridge to Row (F ZMI/d)	peak flow periods. The ALS states that for Q50 there is no water available for licensing and Q30 has restricted water available for licensing.
Option 2	JU	Recycling (SHZ). Toribindge to Bewr (5.7101/d)	
			The bews_conjuscheme is a treated entuent recycling scheme discharging to bew reservoir (GB30044398) which during operation of the parties equid patentially result in physics chemical physical data is a biological tata is a lements of CB20641208, Magraphida are
			option could potentially result in physico-chemical effects that could impact on biological status elements of GB50044396, Macrophysics are
Option 3			alleady at 1 our status, and the option could make it more difficult to achieve future improvements.
Option 3			The Bewl Reservoir provides a compensation flow downstream and therefore any changes to the physico-chemical quality of the Bewl Water
			may have an impact on the downstream waterbody (GB106040018500). However, the Bewl river WB currently has a High Phosphate
Water body type		River	classification and Good biological quality elements. Therefore, the current physico-chemical status of Bewl Water Reservoir is not deteriorating
Hydromorph design	ation	Heavily Modified	the downstream river water body. An assessment of whether further deterioration of the Bewl Reservoir physico-chemical effects could impact
Water body ID		GB106040018500	the downstream surface water body would be required but this remains potentially non compliant low-confidence based on the current WFD
			status of each waterbody.
			The combination of these two downstream impacts on hydromorphology and physico-chemical status may lead to impacts on ecology,
			nowever the interimodal is low-controllerice without numer investigation. The changes to the WPD assessment on this waterbody
Water body name		Bewl	(Gb 100040010000) for option SWS_NWW_nn+KSK_KET_ALL_table are to change the Phys-chem water quality status element potential for deterioration from Uncertain to Detertially one compliant (low conf.)

	Baseline St	atus		Reaso	ns for n	ot achi	eving good status	Assessment of option		
Status element	RBMP2 status (2015)	2019 interim Status	Flow	Morphology	Sanitary water quality	Nutrients	Other	Assessment	Potential for deterioration	Potential for introduction of impediments
Fish	Poor	Good						Changes to the hydrological regime, river continuity and morphological conditions due to change in baseflow could impact fish, invertebrate and macrophyte/phytobenthos populations. Treated effluent discharge may further deteriorate the phosphorous physico- chemical status element of Bewl Water Reservoir which releases compensation flows to the downstream water body. This may obtentially deteriorate the physico-chemical quality	Non- compliant (low conf.)	n/a
Invertebrates	Good	Good						elements of the downstream water body GB106040018500 and consequently the biological quality elements.	Non- compliant (low conf.)	n/a
Macrophytes/ phytobenthos	n/a	n/a							n/a	n/a
Phys-chem water quality (in support of ecological status)	Good	Good						Changes to storage and associated changes to depth, mixing and retention times may affect water quality in the reservoir and therefore could affect downstream water quality. The impact of treated effluent discharge on the water quality of Bewl Reservoir may have an impact on the physico-chemical status of the downstream Bewl SWB through the release of compensation flows. However, the current WFD status of the Bewl is not currently impacted by the compensation release from Bewl Reservoir.	Non- compliant (low conf.)	n/a
Chemicals	Good	Bad	Confirn reason	ned - Me not det	ercury, F ermined	PBDE,		The SWS_KMW_HI-RSR_RE1_ALL_rab1 scheme is not expected to change the status of chemical elements within the reservoir or downstream. However the discharge may introduce new or increased concentrations of chemicals downstream therefore this will require further review to determine the relative concentrations of chemicals in the discharge and receiving water.	Non- compliant (low conf.)	n/a
RBMP2 water body measures			not known at water body scale				,		n/a	n/a
								Overall assessment of WFD Regulations compliance of the option in this water body	Non-cor (low c	mpliant conf.)

Option 1	SWS_HWZ _HI- TFR_HSE_ CNO_oan1	Interzonal itchen W (74MI/d)	l transfe SW to Y	r (HSE- ′ew Hill ∣	HWZ): L bi-direct	ower ional		Option description a The 3 schemes oar watercourse. The POT_TOTT_9	and potential effects: n1, oan2 and oan3 are the same option with variable outputs, and the pipeline construction does 10 and Ott MM to Otter 90 are also the same scheme, and propose 4 separate watercourse cross	tion description and potential effects: e 3 schemes can1, can2 and can3 are the same option with variable outputs, and the pipeline construction does not cross the ltchen tercourse. e POT_TOTT_90 and Ott MM to Otter 90 are also the same scheme, and propose 4 separate watercourse crossing. Therefore there				
Option 2	SWS_HAZ_ HI- TFR_HWZ_ ALL_oan2	Interzon:	al transf Andover	er (HW2 bi-direc	Z-HAZ): tional (1	Winche 5Ml/d)	ester to	schemes in this wa these options assur These schemes are the correct constru-	hemes in this waterbody that require construction activities that cross the tichen watercourse across a 1km stretch of rwer. The screening of ese options assumes the construction activities will be WFD compliant through the use of trenchless or other appropriate construction methods. Here schemes are still WFD compliant after the cumulative assessment, assuming e correct construction methods are used, the timing and occurence of these construction activities is appropriate to avoid any deterioration of the ED elements, and there is achieved the cumulative advectorizing of the waterbody to identify any impacts due to construction.					
Option 3	SWS_HKZ_ HI- TFR_HAZ_ ALL_oan3	Interzo Ki	onal tran ingsclere	isfer (HA e bi-dire	AZ-HKZ) ctional (: Andov 10MI/d)	ver to	WFD elements, an	d there is adequate water quality and ecological monitoring of the waterbody to identify any impa	icts due to const	ruction.			
Option 4	SWS_HSE _HI- TFR_PRT_ ALL_pwc2	Bull	k import Lower if	(HSE): tchen V	PWC So VSW (21	ource A Ml/d)	to							
Option 5	Ott MM to Otter 90	Bulk imp	ort (HSE Lower if	E): Hava tchen V	nt Thick VSW (90	et Rese IMI/d)	ervoir to							
Option 6	SWS_PWE _HI- REU_RE1_ ALL_60toht v0.1	Recyclin from F	ng (HSE) Portsmo): Recha uth Hart	arge of H bour W1	lavant 1 "W (601	Thicket MI/d)							
Water body type		River						1						
Hydromorph designa	ation	not desigr	nated ar	tifical or	heavily	modifie	d	1						
Water body ID		GB107042022580]						
Water body name		ltchen												
	Baselin	e Status		Reaso	ons for r	iot ach	ieving g	ood status	status Assessment of option					
Status element	RBMP2 status (2015)	2019 status	Flow	Morphology	Sanitary water quality	Nutrients		Other	Assessment	Potential for deterioration	Potential for introduction of impediments			
			-					0	No change to Stage 2 Screening assessment for either option					
Phytoplankton	High	High								Compliant (med. conf.)	n/a			
Invertebrates	High	High								Compliant (med. conf.)	Compliant (med. conf.)			
Macrophytes/ phytobenthos	High		Probable				Inv clas indica	vestigations into sification status - tes uncertain there is a problem.		Compliant (med. conf.)	n/a			
Phys-chem water quality (in support of ecological status)	High	High							No change to Stage 2 Screening assessment for either option	Compliant (med. conf.)	n/a			
Chemicals			Fail du Compo	e to Ber ounds, F	nzo(g-h- Polybron	i)peryle ninated	ne, Mer dipheny	cury and Its I ethers (PBDE)	No change to Stage 2 Screening assessment for either option	Compliant (med. conf.)	Compliant (med. conf.)			
RBMP2 water body measures n/a (as not heavily modified or artifici							artificial)	N/a					
									Overall assessment of WFD Regulations compliance of the option in this water body	Com (med.	pliant conf.)			

Option 1	SWS_IOW_ HI- GRW_ALL_ ALL_nw_gw a_kni_westi	Groundwa	ater (IO\ ch (LGS	W): New) (1.9Mi	/d)	les at		Option description SWS_IOW_HI-RE support flows in th the construction of the upper catchme	vition description and potential effects: NS_IOW_IHREU_RET_ALL_sety(exp4) proposes the transfer of treated effluent from Sandown WwTW (currently discharged to sea), to ipport flows in the Eastern River Yar upstream of the Sandown WSW abstraction at Alverstone. Potential impacts could occur as a result of a construction of new in-channel infrastructure, and the discharge of treated effluent during operation. The disharge site would be located in a upper catchment of the Eastern River Yar, upstream of the Alverstone Marshes SSSI.						
Option 2	SWS_IOW_ HI+ REU_RE1_ ALL_sey9	Red	cycling (I	IOW): S	andown	(8.5MI/d	d)	SWS_IOW_HI-GR Sand (LGS) to its I The Newchurch LC	W_ALL_ALL_nw_gwa_kni_westi (kni_westi) scheme proposes to maximise the source output: icensed capacity by replacing all 3 boreholes. The scheme output would result in a 4.5 Mild inc. So site is located approximately 700m from the Alverstone Marshes GWDTE SSSI, the boreho	from Newchurch rease in abstract les abstract fron	tower Green tion above RA.				
Option 3	SWS_IOW_ HI+ GRW_ALL_ ALL_br_less	Ground	water (IC	OW): Ne Yar3 (1.	w boreh 5Ml/d)	iole at E	astern	GWDTE which cou SWS_IOW_HI-GR	We' Oreelsand GYrb (GY-0/0130/2300), The Incleased adsidual is likely of result in a feuducion in desirion of the Castern 1 a and WDTE which could have resulting impacts on biological status dements. NS_IOW_HI-GRW_ALL_ALL_br_less (br_less) scheme proposes to drill a replacement borehole for Eastern Yar3. The source is also cated in the IOW Cental Downs Chaik GWB within 700m of Wroxall Stream (GB107/101006210) which discharges to the Eastern Yar (Lower) WS. The source is only used intermittently, and is used to augment the Yar, thereby offsetting any flow impacts and is assessed as WED impliant. Therefore it is possible that use of Eastern Yar3 (WR171) may help to offset impact by the increased Newchurch LGS abstraction were this would need further investigation.						
Water body type		River						SWB. The source i							
Hydromorph design: Mater body ID	ation	GB10710	100/100597	1				compliant. Therefore							
Water body name Eastern Yar (Lower)								The Alverstone ga confluence of Scot flows, could thereft augmentation if it v discharge needs to The cumulative im poptions would offs however, this neee spatial impact on th	s Averstone gauging station measures flow on the Eastern Yar downstream from the Alverton Marshes GWDTE and upstream from the fluence of Scotchells Bk with the Eastern Yar. Q95 flows are 0.05 m3/s or 4.32 MId. The impact of the abstraction, if impacting on river we, could therefore be substantial, but would be offset by the increase in discharge into the Eastern War, as well as by the Eastern Yar3 mentation if it was in use. However the impact of reduction in baseflow on the dilution capacity of the river, particularly in low flows, prior to charge needs to be properly investigated when considering the water quality requirements of the discharge.						
	Baselin	Status Reasons for not achieving go						od status	Assessment of option						
Status element	RBMP2 status (2015)	2019 interim itatus	low	Morphology	sanitary water	lutrients		Other	Assessment	Potential for deterioration	Potential for introduction of impediments				
Fish	High	High						-	The geology underlying SWB (GB107101005971) indicates a likely high degree of continuity between groundwater in the Central Downs Chaik and Lower Greensand GWB and surface water bodies. Therefore increases to RA abstraction through the brigger less and kni, west schemes may reduce baseflow to the streams discharging to the Eastern Yar (Lower). Changes to the hordnociar cenceme: river continuity and monholonical conditions due to change to the hordnociar cenceme.	Non-compliant (low conf.)	n/a				
Invertebrates	High	Good					No RN	IAG Available for 2022	in baseflow could impact fish and invertebrate populations. Additionally there is a potential for direct and downstream impact on the nearby GWDTE SSSI. The 2022 Cycle 3 classifications have downgraded DO and Phosphate elements to moderate, from Hinh and Cond respectively in 2019 althouint on RNAG is available currently. A reduction		Non-complian (low conf.)				
Macrophytes/ phytobenthos	n/a	n/a							In the might and to do the spectrate in 2019, and togin for known is available cutrently. A reduction in basellow may impact on the dilution capacity of the Eastern Yar (Lower). The resultant changes in physico-chemical quality elements may have a corresponding impact on ecological elements. Since the new discharge under the Seyd Scheme may also affect the physico- chemistry the resultant impact could be exacerbated by the lower baselfow, especially during tow flows. Higher flows on the Eastern Yar after the treated effluent discharge may also counteract the reduced baselfow due to groundwater abstraction from the Newchurch LGS abstraction. Further investigation is required to understand whether any changes to physico-chemistry could affect ecological classifications and what the impact of groundwater abstraction will be on the surface water bodies.	Non-compliant (low conf.)	Non-compliant (low conf.)				
Phys-chem water quality (in support of ecological status)	Mod	Good			Histori	cal iron i: - water	issues alle industry.	ocated to point	Reduction in flow, particularly during times of low flow, could result in changes to physico- chemical quality elements (e.g. BOD, DO, pH, temperature), potentially causing a deterioration in status. It is possible that a new discharge of treated effluent could introduce new chemicals or increase the loading of chemicals currently present in the water body. Since bodh options have a potential to deteriorate the physico chemistry classification elements, particularly DO and Phosphate, further investigation are required to determine whether changes to these elements may result in impacts upon biological quality elements.	Non-compliant (low conf.)	Non-complian (low conf.)				
Chemicals	Good	Fail	Fail du Polybre	le to Per ominate	fluorooc d dipher	tane sulj iyl ethers	phonate (s (PBDE)	(PFOS) and	None of the options would introduce new priority or priority hazardous chemicals. An investigation into the likely reduction in flows caused by the kni_westi and br_less schemes is required to understand whether the dilution capacity of the SWB and downstream Eastern Yar (Lower) could further deteriorate the chemical status.	Non-compliant (low conf.)	Non-complian (low conf.)				
RBMP2 water body	"Heavily modified use - Flood protect Physical form and function - 2.remon structures. 6 In channel morph diver culverts ALL NOT IN PLACE. 10 Flo Floodplain connectivity. 4 Remove or ALL IN PLACE *					Flood p stion - 2. el morph PLACE. . 4 Rem	rotection remove of diversity 10 Flood love or so	obsolete r, 8.Re-opening bunds, 12. iften hard bank	It is expected that the Water recycling discharge option would be beneficial to RBMP measures, by retaining more flow in the river	Compliant (low conf.)	Compliant (low conf.)				
										"Non-co (low c	ompliant conf.)"				

			Option description and potential effects:
.	SWS_HAZ_ HI-	Groundwater (HAZ): Recommission Chilbolton	The Chilbolton option involves bringing the site back into service earlier by installing nitrate treatments This would increase
Option 1	GRW_ALL_	(0.5MI/d)	abstraction above recent actual, but within current licence.
	ALL_chi		The Kings Somborne option involves the development of a new borehole and pump capacity to increase the DO from the site
	0.000		from the current 1.5Ml/d to the licence 4Ml/d giving a potential benefit of 2.5Ml/d.
Option 2	HI-	Groundwater (HRZ): Remove constraints at	
Option 2	GRW_ALL_	Kings Sombourne (2.5MI/d)	The Romsey option involves 3 replacement boreholes to increase DU on site. Scheme output is 13./MI/d. No additional treatment is required Penlacement borehole locations are distant from existing borehole locations and require new pinelines to
			connect to WSW.
	_HI-	Groundwater (HRZ): New boreholes at Romsey	
Option 3 GRW_AI		(4.8MI/d)	The Test MAR option involves recharge of the confined chalk aquifer from mains water in winter months, with subsequent
	a_tim_westi		assumed that there is sufficient treatment capacity for the abstracted water. The scheme assumes an extended pilot trial period
	SWS_HSW HI-		with subsequent development of the MAR scheme. Expected DO from the developed scheme is 15MI/d.
Option 4	GRW_RE1	Groundwater (HSW): Test MAR (5.5 MI/d)	
	_ALL_str_as r_tes_westi		
Water body type		Groundwater	
Hator body type			
Water body ID		GB40701G501200	
Water body name		River Test Chalk	

	Baselin	e Status		Assessment of option		
Status element	RBMP2 status (2015)	2019 interim status	Reasons for not achieving good status	Assessment	Potential for deterioration	Potential for introduction of impediments
Dependent surface water body status	Good	Good		Increase in abstraction in the unconfined Chalk within licence limits (from the Chilbolton, Kings Somborne and Romsey options) may affect flow in nearby River Test. ALS shows there is restricted water available at Q95 with water available at Q70, Q50, Q30. Changes to the hydrological regime, river continuity and morphological conditions due to change in baseflow could impact fish and invertebrate populations. However, restricted water availability applies only further downstream, and is protected by a HOF. Therefore, local impacts, within existing licence, should be acceptable and downstream impacts avoided by HOF (and potentially associated reduction in other sources). The Test MAR option is not expected to affect river flows because it would abstract from the confined aquifer	Compliant (low conf.)	
Ground water dependent terrestrial ecosystem test	Good	Good		No GWDTEs are likely to be affected by this option	Compliant (low conf.)	
Saline intrusion	Good	Good		The potential for saline intrusion into the aquifer is considered to be low given the distance from the coast and the lack of saline intrusion at these sources historically.	Compliant (high conf.)	
Water balance	Good	Good		Increased abstraction from the Chilbolton, Kings Somborne and Romsey options will reduce the surplus in the water balance. However as the increase in abstraction will be within the current licence, it is relatively unlikely to result in deterioration of status. The Test MAR option involves recharge of the confined Chalk, and is designed to maintain water balance.	Compliant (low conf.)	
Chemical (overall)	Poor	Poor	Drinking Water Protected Area and General Chemical Test: Natural conditions- groundwater status recovery time	For the Test MAR option, the water will be pre-treated and hence will not introduce any new chemicals to the groundwater body. The other options also will not introduce any new chemicals to the groundwater body.	Compliant (med. conf.)	
RBMP2 water body r	RBMP2 water body measures		not known at water body scale		n/a	
				Overall assessment of WFD Regulations compliance of the option in this water body	Com (low.	pliant conf.)

			Option description and potential effects:
Option 1	SWS_SNZ_ HI-	Groundwater (SNZ): Petersfield refurbishment	The Petersfield Refurbishment option will transfer excess water for enhanced treatment at Midhurst , with refurbishment of
	GRW_ALL_ ALL Peterst	(1.6MI/d)	
	-		The Reinstate West Chiltington option will bring the groundwater source back into service by constructing a new treatment plant
	SWS_SNZ_		and flood resilience measures at the site.
Ontion 2	HI- GRW ALL	Groundwater (SNZ): Reinstate West Chiltington	
Option 2	ALL_smock	(3.1MI/d)	The Petworth option will involve aniling a new replacement borenole to allow the source to be brought back in to service
	alley		All three options will increase aroundwaterabstraction from the Greensand above recent levels, but within the existing licence
	SWS_SNZ_		An unce options will inclease grounowater assuration from the options and the verse, but within the existing incence quantity. The increase in abstraction could potentially have impacts on river flows or GWDTEs.
Option 3	ROC_RE1_	Groundwater (SNZ): New borehole at Petworth	
	CNO_hsb-	(41MI/d)	
	rcm		
Water body type		Groundwater	
		00407040500400	
vvater body ID		GB40701G503100	
Water body name		Lower Greensand Arun & Western Streams	

	Baselin	e Status		Assessment of option		
Status element	RBMP2 status (2015)	2019 interim status	Reasons for not achieving good status	Assessment	Potential for deterioration	Potential for introduction of impediments
Dependent surface water body status	Good	Good		The Arun and Western Streams ALS (June 2022) has restricted water available in the Arun & Western Streams Greensand. SWS are currently undertaking a WINEP investigation to develop the Pulborough groundwater model (which covers the Greensand water body) and assess potential impacts of abstraction on rivers and designated sites.	Non-compliant (low conf.)	
Ground water dependent terrestrial ecosystem test	Good	Good		dependent surface waters or GWDTEs are possible. This is in line with the ALS current conclusion that there is restricted water available at the groundwater body level.	Non-compliant (low conf.)	
Saline intrusion	Good	Good		This is an inland groundwater body with no current issues with saline intrusion, and the increased rate of abstraction would be highly unlikely to result in deterioration	Compliant (high conf.)	
Water balance	Good	Good		As the water balance is currently Good, and abstraction would be within licence, it is assumed that this option would not result in deterioration of the water balance test. However, this conclusion will be subject to the Pulborough groundwater modelling and associated WINEP investigation being finalised	Compliant (low conf.)	
Chemical (overall)	Poor	Poor	Drinking Water Protected Area- poor nutrient management		Compliant (med. conf.)	
RBMP2 water body r	neasures					
				Overall assessment of WFD Regulations compliance of the option in this water body	Non-co (low o	mpliant conf.)

							Option description	and potential effects: nes in this waterbody: HSB-RCM and tilmore-hardha n 10				
							The hsb-rcm sche Petworth stream	me would increase the RA abstraction from the Petworth WSW borehole source which may caus which discharges into the Western Rother.	se a reduction ir	flow of the		
Option 1	SWS_SNZ_HI- ROC_RE1_ALL_hsb- rcm	Groundw	/ater (SI	NZ): Nev (4MI	w boreho I/d)	ole at Pe	tworth The hardha_p_10 prevent short or lo	he hardha_p_10 scheme has no operational activity in this waterbody and any pipeline construction acitivites are assumed to use methods that revent short or long term risk to WFD deterioration.				
Option 2	SWS_SNZ_HI- TFR_RZ5_ALL_tilmore- hardha p 10	Bulk im	port (SN	NZ): SE\	W RZ5 to	o Pulbo	Therefore, there w alone	rould be no cumulative effects in this water body catchment, beyond the conclusions for the new t	oorehole at Petw	vorth (hsb-rcm)		
Water body type		River										
Hydromorph designa	ition	not desigi	nated ar	tificial o	r heavily	modifie	d					
Water body ID		GB10704	101278	0								
Water body name	Nater body name Petworth Stream											
	Baseline St	atus		Reaso	ons for r	not achi	eving good status	Assessment of option				
Status element	RBMP2 status (2015)	2019 interim status	Flow	Morphology	Sanitary water quality	Nutrients	Other	Assessment	Potential for deterioration	Potential for introduction of impediments		
Fish	Good	Good						Increase in abstraction within licence limits may affect flow in nearby stream discharging to the River Rother. ALS shows there is no water available at Q95 and Q70. Restricted water available at Q95. Geology indicates likely high degree of continuity between groundwater and surface water. Changes to the hydrological regime, river continuity and morphological conditions due to	Non-compliant (low conf.)	n/a		
Invertebrates	Good	Good						change in baseflow could impact fish, invertebrate and macrophyte/phytobenthos populations.	Non-compliant (low conf.)	n/a		
Macrophytes/ phytobenthos	Mod	Mod							Non-compliant (low conf.)	Non-compliant (low conf.)		
Phys-chem water quality (in support of ecological status)	Mod	Mod				Phosphate	Probable - Diffuse Pollution - Phosphate, Dissolved Oxygen - Water Industry groundwater abstraction	Reduction in flow, particularly during times of low flow, could result in changes to physico- chemical quality elements (e.g. BOD, DO, pH, temperature), potentially causing a deterioration in status. The CDE indicate that Phosphate contributions are a key RNAG, flow reductions could exacerbate this issue.	Non-compliant (low conf.)	Non-compliant (low conf.)		
Chemicals		Fail	Confirr	med - M	ercury, F	PBDE		These options would not introduce new priority or priority hazardous chemicals. While reduced flows could reduce dilution of point source discharges, this is unlikely to influence the classification of any chemicals, particularly those that are ubiquitous.	Compliant (low conf.)	Compliant (low conf.)		
RBMP2 water body measures			N/a						n/a	n/a		
									Non-co (low	ompliant conf.)		