

Drainage and Wastewater Management Plan

Robertsbridge Wastewater System Plan

Contents

Wastewater System Map

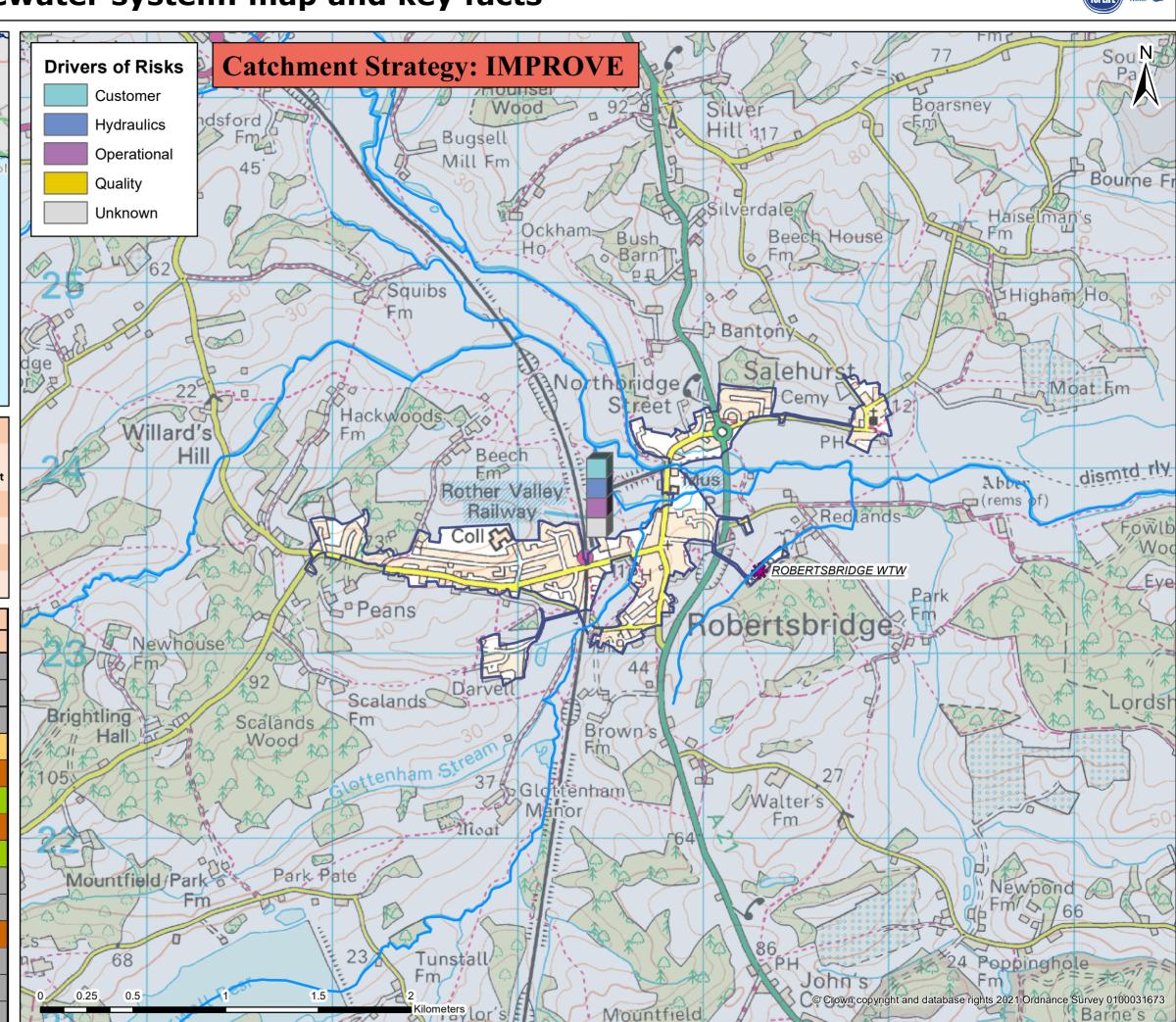
Problem Characterisation

Generic Options

Outline Option Appraisal

Investment Needs

Location of Potential Options


Robertsbridge wastewater system: map and key facts

Population Equivalent (PE)	2,529
Discharge Waterbody	Lower Rother from Etchingham to Scott's Float
Number of Pumping Stations	4
Number of Overflows	3
Length of Sewer (km)	28.8
Catchment Reference	ROBE

	BRAVA Results Table (ROBE)					
	Planning Objective	2020	2050			
1	Internal Sewer Flooding Risk	0				
2	Pollution Risk 2					
3	Sewer Collapse Risk 0					
4	Risk of Sewer Flooding in a 1 in 50 year storm 1 1					
5	Storm Overflow performance	2	2			
6	Risk of WTW Compliance Failure	0	0			
7	Risk of flooding due to Hydraulic Overload	2	2			
8	Dry Weather Flow Compliance	0	0			
9	Good Ecological Status / Potential	0				
10	Surface Water Management	0				
11	Nutrient Neutrality	2	2			
12	Groundwater Pollution	0				
13	Bathing Waters	NA				
14	Shellfish Waters	NA				

Problem Characterisation Robertsbridge (ROBE)

This document describes the causes of the risks identified by the Baseline Risk and Vulnerability Assessment (BRAVA). The BRAVA results for this wastewater system are summarised in Table 1. The results indicate that flooding, pollution and water quality are the main concerns in this wastewater system. We have completed risk assessments for 2050 where we have the data and tools available to do so. For the other planning objectives, we will explore how we can predict future risks for the next cycle of DWMPs. All the risk assessment methods need to be reviewed after the first DWMPs have been produced with a view to improve the methods and data for future planning cycles.

Table 1: Results of the BRAVA for Robertsbridge wastewater system

Pla	nning Objectives	2020	Driver	2050
1	Internal Sewer Flooding Risk	0	•	
2	Pollution Risk	2	Customer	
3	Sewer Collapse Risk	0	-	
4	Sewer Flooding in a 1 in 50-year storm	1	Hydraulic	1
5	Storm Overflow Performance	2	Hydraulic	2
6	WTW Water Quality Compliance	0	•	0
7	Flooding due to Hydraulic Overload	2	Hydraulic	2
8	WTW Dry Weather Flow Compliance	0	-	0
9	Good Ecological Status / Good Ecological Potential	0	•	
10	Surface Water Management	0	-	
11	Nutrient Neutrality	2	Unknown	2
12	Groundwater Pollution	0	-	
13	Bathing Waters	NA	-	
14	Shellfish Waters	NA	-	

Key

BRAVA Risk Band						
NA Not Applicable*						
0	Not Significant					
1	Moderately Significant					
2	Very Significant					

*No issues relevant to planning objective within Wastewater System

Investment Strategy

The risks identified in this wastewater system mean that we have assigned the following investment strategy:

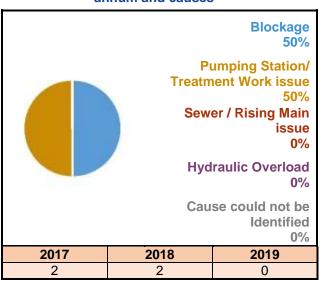
Improve


This means that we consider that the current performance of the drainage and wastewater system needs to be improved to reduce the impacts on our customers and/or the environment. We will plan investment to reduce the current risks by actively looking to invest capital funding in the short term to address current performance issues (and consider future risks when implementing improvements).

Planning Objective 1: Internal Sewer Flooding

The number of internal sewer flooding incidents reported during the three years considered by the risk assessment are shown in Figure 1. The total number of connections in this wastewater system means there have been less than 1.68 incidents per 10,000 connections per year (a threshold set by Ofwat) so the risk is in the 'not significant' band.

Figure 1: Number of internal flooding incidents per annum and causes



Planning Objective 2: Pollution Risk

The number of pollution incidents reported during the three years considered by the risk assessment are shown in Figure 2. The length of sewer in this wastewater system means there have been more than 49.01 incidents per 10,000km per year (a threshold set by Ofwat) so the risk is in the 'very significant' band.

The primary driver for pollution is 'Customer'. Blockages caused 50% of all incidents recorded in this wastewater system. Blockages are often caused by fats, oils, grease, nappies, wet wipes and sanitary products within the system. These items are non-flushable and should not be disposed of into wastewater systems.

Figure 2: Number of pollution incidents per annum and causes

Planning Objective 3: Sewer Collapse Risk

There have been no sewer collapses or rising main bursts in the three years considered by this risk assessment so the risk is in the 'not significant' band.

Planning Objective 4: Sewer Flooding in a 1 in 50 Year Storm

The risk of flooding in a 1 in 50 year storm is moderately significant in 2020 and 2050. A hydraulic model is not available for this wastewater system, however our wastewater system vulnerability assessment (using Ofwat's guidance on Risk of Sewer Flooding in a Storm) identified this wastewater system as grade 3/4.

Our wastewater networks are generally designed with capacity for up to a 1 in 30 year storm, hence flooding is expected to occur during more severe storms such as a 1 in 50 year event. Flooding will occur due to insufficient capacity of the drainage system either on the surface before it enters the drainage system, and/or from manholes, in people's homes or at a low point elsewhere in the system.

Planning Objective 5: Storm Overflow Performance

The storm overflow performance risk has been assessed as very significant for both 2020 and 2050. Table 2 shows the overflows that discharge above the low threshold set for storm overflow discharges to Shellfish Water, Bathing Water and inland rivers.

The primary driver for the Storm Overflow Performance is 'Hydraulic.'

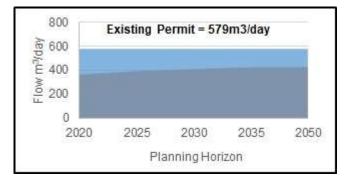
Table 3: Overflows exceeding discharge frequency threshold per annum

	Number of	overflows	Threshold for number of discharges per annum			
	2020	2050	Low Medium High			
Shellfish Waters	0 Medium	0 Medium	Less than 8	Between 8-10	10 or more	
Bathing Waters	0 Medium	0 Medium	Less than 3	Between 3-10	10 or more	
Freshwater	1 High	1 High	Less than 20	Between 20-40	40 or more	

Planning Objective 6: Wastewater Treatment Works Water Quality Compliance

The risk of non-compliance with our wastewater quality permit has been assessed as not significant for both 2020 and 2050. This is because the wastewater treatment works has no record of compliance failure during the last three years (2018-2020).

Planning Objective 7: Flooding due to Hydraulic Overload


This is an assessment of the risk of flooding from sewers during a 1 in 30 year storm, and more frequent rainfall, to understand where flooding could occur. The risk of sewer flooding due to hydraulic overload is very significant in 2020 and 2050. A network model was not available for this assessment, however the network in the wastewater system exceeds its design capacity for 2020 and 2050.

This indicates that the existing capacity of the wastewater network can already be exceeded during 1 in 30 year storms (or more frequent events).

Planning Objective 8: Wastewater Treatment Works Dry Weather Flow Compliance

The risk of Wastewater Treatment Works Dry Weather Flow (DWF) Compliance is not significant for both 2020 and 2050. This is because the average annual DWF for 2017, 2018 and 2019 has been below 80% of the current permit. The predicted DWF in 2050 is also expected to remain below 80% of the current permit, shown in Figure 3.

Figure 3: Recorded and predicted dry weather flow with existing permit

Planning Objective 9: Good Ecological Status / Good Ecological Potential

This wastewater system is not hydraulically linked to a waterbody where wastewater operations are contributing to not achieving GES/GEP, therefore the risk is not significant.

Planning Objective 10: Surface Water Management

A network model was not available for this assessment, therefore the risk has been moderated to not significant for this planning objective.

Planning Objective 11: Nutrient Neutrality

The risk to internationally designated habitat sites from this wastewater system is very significant in 2020 and 2050. This is because Natural England have advised that there is a risk to condition for the habitat sites that are hydraulically linked to our wastewater system, listed in Table 3.

Table 3: Habitat Sites hydraulically linked to wastewater system

Habitat Sites				
Dungeness	Phosphate and Nitrate permit review required Overflow Spills			
Dungeness, Romney Marsh and Rye Bay	Phosphate and Nitrate permit review required Overflow Spills			

Planning Objective 12: Groundwater Pollution

The risk of Groundwater Pollution is not significant. This is because the wastewater network in this wastewater system does not overlap with any groundwater Source Protection Zones (SPZ) used for water supply.

Planning Objective 13: Bathing Waters

This wastewater system does not discharge into a designated bathing water.

Planning Objective 14: Shellfish Waters

The discharges from this wastewater system do not impact on any designated shellfish waters.

Southern Water

August 2021 Version 1

Generic Options Assessment for: Robertsbridge (ROBE)

PO14 Improve Shellfish Water Quality

										for LIFE Southern Water
	Planning Objectives	2020	Driver	2050	Type of Measures	Generic Option Categories	Icon	Take Forward?	Reasons	Examples of Generic Options
PO1	Internal Flooding	0	-	-		Control / Reduce surface water run-off	*1	Υ	-	Natural Flood Management; rural land management and catchment management; SuDS including blue and green infrastructure; storm management
PO2	Pollution Risk	2	Customer	-	Source (Demand) Measures	Reduce groundwater levels		N	#N/A	Reduce leakage from water supply pipes; pump away schemes to locally lower groundwater near sewer network
PO3	Sewer Collapse	0	-	-	(to reduce likelihood)	Improve quality of wastewater	0	Y	-	Domestic and business customer education; incentives and behaviour change (reduce Fats, Oils & Grease, wet wipes etc.); monitoring trade waste at source; on-site black water and/or greywater pre-treatment
PO4	Risk of Sewer Flooding in 1 in 50 yr	1	Hydraulic	1		Reduce the quantity / demand	⊕	N	None of the significant risks are caused by too much foul wastewater entering our systems from homes and businesses.	Water efficient appliances; water efficient measures; blackwater and/or greywater re-use; treatment at source
PO5	Storm Overflow Performance	2	Hydraulic	2	Pathway	Network Improvements	(Y	-	Asset optimisation; additional network capacity; storage; separate flows; structural repairs; re-line sewer pipe and manholes; smart networks.
PO6	Risk of WTW Compliance Failure	0	-	0	(Supply) Measures (to reduce	Improve Treatment Quality	[8-8]	Υ	-	Increase treatment capacity; rationalisation of treatment works (centralisation / de-centralisation); install tertiary plant; UV plant or disinfection facilities; innovation; improve Technical Achievable Limits; new WTWs
PO7	Annualised Flood Risk/Hydraulic Overload	2	Hydraulic	2	likelihood)	Wastewater Transfer to treatment elsewhere)1(N	The causes of risk are not due to where our systems discharge to the environment or our ability to increase the capacity to connect more homes. Transferring wastewater for treatment elsewhere will not reduce any of the significant risks in this catchment.	Transfer flow to other network or treatment sites; transport sewage by tanker to other sites
PO8	DWF Compliance	0	-	0		Mitigate impacts on Air Quality	()	N/A	Not included in first round of DWMPs	Carbon offsetting; noise suppression /filtering; odour control and treatments
PO9	Achieve Good Ecological Status	0	-	-	Receptor Measures	Improve Land and Soils	99	N/A	Not included in first round of DWMPs	Sludge soil enhancement
PO10	Improve Surface Water Management	0	-	-	(to reduce consequences)	Mitigate impacts on receiving waters	\{\Q	Y	-	River enhancement, aeration
PO11	Secure Nutrient Neutrality	2	Unknown	2		Reduce impact on properties		Υ	-	Property flood resilience; non-return valves; flood guards / doors; air brick covers
PO12	Reduce Groundwater Pollution	0	-	-	Other	Study / Investigation	Q	Υ	-	Additional data required; hydraulic model development; WQ monitoring and modelling
PO13	Improve Bathing Water Quality	NA	-	-						